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INTRODUCTION

While the Arctic Ocean represents only 1% of the
global ocean, it accounts for 25% of the world’s conti-
nental shelves (Dittmar & Kattner 2003). These shelves
represent an important sink of carbon: the average
organic carbon burial corresponds to 7 to 11% of the

global budget (Stein & Macdonald 2004). Organic
fluxes to the sea floor depend on production and pro-
cesses in the overlying water column. In particular, the
quality as well as the quantity of biogenic matter fluxes
can be determined by zooplankton grazing, which has
a strong impact on pelagic–benthic coupling (Olli et al.
2002, Wexels Riser et al. 2008). When phytoplankton
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blooms and large zooplankton stocks coincide in space
and time, grazing efficiency is high and sedimentation
of intact phytoplankton cells is low, while when they
are separated in space and time, grazing efficiency is
lower and sedimentation is higher. The inputs to the
sea floor are not always directly buried and can be
used by the benthos. In some areas, much of the over-
lying production falls to the bottom, supplying rich and
active communities of benthic organisms (Piepenburg
2005). Recent studies (e.g. Tremblay et al. 2002,
Vidussi et al. 2004) have shown that primary produc-
tion is much higher in the Arctic than previously
believed, and in areas covered by ice, ice algae can be
a major source of carbon for both pelagic and benthic
food webs (Gosselin et al. 1997, Klages et al. 2004,
Renaud et al. 2007a).

On a volume basis, the Arctic Ocean is the ocean
with the highest terrestrial input in terms of freshwater
and organic matter (Dittmar & Kattner 2003), and thus
terrestrial inputs can be an important source of organic
matter to the benthos. The Mackenzie River is the
fourth largest of all river systems discharging into the
Arctic (Macdonald et al. 1998). Carbon input to the
southeast Beaufort Sea, adjacent to the Mackenzie
River, is derived primarily from 3 sources: marine bio-
logical production, the Mackenzie plume, and coastal
and seabed erosion (O’Brien et al. 2006).

Climate models suggest that global warming effects
in the Arctic are expected to be disproportionately
higher than in temperate regions, and will increase
riverine fluxes due to intensifying hydrological cycles
(Peterson et al. 2002, Wu et al. 2005). Moreover, modi-
fications of ice distribution and seasonality are ex-
pected to have an effect on primary production
(Renaud et al. 2007b), probably favoring phytoplank-
ton to the detriment of ice-algae production, affecting
the entire food web and leading to changes in pelagic–
benthic coupling (Carroll & Carroll 2003). It is there-
fore very important to characterize organic matter
pathways to the shelf of the Arctic basin. This study
explores the nature of the organic matter supplied to
the southeast Beaufort Sea, as a function of environ-
mental factors, including productivity regime, riverine
inputs, and ice conditions.

The study of sedimentary pigments is valuable for
understanding spatial and seasonal variations of or-
ganic matter inputs to Arctic benthos (Morata &
Renaud 2008, and references therein). Chlorophyll
(chl) a, a pigment present in all photosynthetic eukary-
otes, has a half-life of approximately 3 wk in polar sed-
iments (Graf et al. 1995). Thus, sedimentary chl a is a
good indicator of the ‘freshness’ of the algal matter
inputs to the sediment (Boon & Duineveld 1996), while
its degradation products (phaeophorbides, phaeo-
phytins, and their pyro-derivatives), also called phaeo-

pigments, are markers indicating physiological status
of phytoplankton and decomposition pathways, such
as herbivory grazing or bacterial degradation (Man-
toura & Llewellyn 1983, Villanueva & Hastings 2000).
Moreover, since chl b is largely found in higher terres-
trial plants and has a shorter half-life than chl a, its
degradation products (phaeophytin b and phaeophor-
bide b) can be used to investigate inputs of terrestrial
material. Many of the accessory pigments (e.g. fucox-
anthin) are specific for certain algal groups and can be
used as taxonomic markers (Gieskes & Kraay 1984,
Jeffrey & Vesk 1997).

Particulate organic matter (POM) within the water col-
umn is comprised of all suspended material >0.45 µm,
and is usually dominated by various types of phytoplank-
ton (including ice algae) and detritus (Sakshaug 2004).
Stable isotopes and C:N values may be used to deter-
mine the relative importance of ice algae, phytoplank-
ton, and terrestrial sources in the POM (McMahon et al.
2006). C:N values are helpful for differentiating marine
and terrestrial organic matter (Redfield et al. 1963, Taka-
hashi et al. 1985, Anderson & Sarmiento 1994), and
provide an indication of potential food quality that is
complementary to δ13C concentration. In sediments,
microbially mediated degradation can directly alter the
substrate by isotopic fractionation (Miyake & Wada 1971,
Altabet 1988), such that the data may become more
difficult to interpret.

Our study combined pigment and stable isotope
analysis, and measurement of elemental composition
of POM and sedimentary organic matter to trace the
sources and fate of organic matter in the southeast
Beaufort Sea. We addressed the following questions:
(1) What is the importance of local production for
inputs of organic matter to the benthos? (2) Is the
Mackenzie River an important source of terrestrial
organic material to the entire area? (3) Are the spatial
and seasonal variations of organic matter inputs to the
benthos affecting benthic activities?

MATERIALS AND METHODS 

Study area and sampling techniques. This study was
conducted in the southeast Beaufort Sea (Table 1, Fig. 1)
during fall 2003 (20 October to 19 November) and sum-
mer 2004 (26 June to 31 July) on board the Canadian Re-
search Icebreaker CCGS ‘Amundsen’ (see Fig. 2a,b).
The study area included the Mackenzie shelf, the
Amundsen Gulf, and Franklin Bay. On the shelf area,
stations ranged from 42 to 86 m in water depth, and in
the Amundsen Gulf and Franklin Bay, from 167 to 570 m;
and Stn 850 was at 1122 m (Table 1). While the entire
area is ice-covered in the winter, the Cape Bathurst
polynya opens during spring in the Amundsen Gulf and
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along the continental slope, and by summer, the entire
area is usually ice-free. All summer stations were ice-
free, but during the fall, ice was present at some stations.

In the fall, sediment was collected at 7 stations, and
water column samples were collected at 11 stations; in
the summer, there were 20 sediment and 11 water col-
umn stations (see Fig. 2a,b). To collect POM, 250 ml to
10 l of water from the chlorophyll maximum depth (be-
tween 10 and 50 m, as determined by an in vivo fluores-
cence probe attached to the CTD) was filtered onto pre-
combusted Whatman GF/F filters (5 h at 500°C). Six
replicate filters for POM analysis were stored at –20°C
prior to HPLC and isotope analysis. Since many stations
did not exhibit a phytoplankton bloom, the chlorophyll
max was sometimes poorly defined. Thus, the total chl a
(Tchl a) over the entire water column was also mea-
sured by sampling several (7 to 11) depths and integrat-
ing for the entire depth. Comparison of the POM chl a
and Tchl a showed a significant correlation (r = 0.8, p <

0.05); however, Tchl a was significantly
correlated with the sedimentary chl a
(see Table 2) while the POM chl a con-
centration was not, suggesting that the
sedimentary chl a reflects the entire chl
a of the water column and not only at
the chlorophyll maximum. For that rea-
son, when comparing sedimentary bio-
markers to water column pigments,
Tchl a was used instead of POM chl a.

Sediment was sampled by replicate
deployments of a box corer (45 × 45 cm).
Cores were also sampled for estimation
of sediment carbon demand, and results
are presented in Renaud et al. (2007c).
Results are summarized in Table 1. Mul-
tiple sub-samples (5 cm diameter × 10 cm
deep) for sedimentary pigment and sta-
ble isotope analysis were taken from
each station. The top 2 cm of sediment
were extruded and sliced under dimin-
ished light conditions. Each interval slice
was divided in 2: half for pigment analy-
sis by fluorometry (Holm-Hansen et al.
1965), and half for pigment analysis by
HPLC (Wright et al. 1991, Chen et al.
2001) and stable isotope analysis (Hob-
son et al. 1995). Both pigment sub-sam-
ples were wrapped in foil and frozen di-
rectly after slicing in order to avoid
pigment degradation.

Fluorometry analysis. Within 2 wk,
every sub-sample of sediment was ana-
lyzed for chloropigment content by flu-
orometry (Holm-Hansen et al. 1965).
The samples were placed in 60 ml cen-

trifuge tubes, and 20 ml of 100% acetone were added.
Tubes were stored at –20°C in the dark for 48 h and
shaken periodically. Prior to fluorometer analysis, the
sediment was centrifuged (1968 × g for 10 min at 0°C).
The supernatant was analyzed in a pre-calibrated flu-
orometer (Turner Designs Model 10-AU) before and
after acidification with 5% HCl, in order to determine
the ratio of chl a to total phaeopigments (chl a:phaeo).
Due to logistic difficulties, the amount of pigment was
determined per volume of wet sediment, not by dry
weight; thus the values obtained by fluorometry are
presented in mg m–2 for the first 2 cm of sediment.

HPLC analysis. POM filters were extracted in 2 ml of
100% HPLC-grade acetone for 12 to 24 h (adapted from
Parsons et al. 1984). Extracts were filtered through
0.2 µm nylon syringe filters. Freeze-dried sediment (1 to
3 g) was transferred to a 50 ml polypropylene cen-
trifuge tube to which 8 ml of 80:20 HPLC grade ace-
tone:methanol were added (adapted from Leavitt &
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Fig. 1. Major seas and rivers of the Arctic Ocean. The study area (indicated by a
rectangle) is situated at the mouth of the Mackenzie River and in the Beaufort Sea.
Adapted from the University of Texas Perry-Castaneda Library map collection
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Hodgson 2001). The mixture was sonicated for 5 min in
an ice bath and extracted in the freezer overnight. Ex-
tracts were separated from the sediment by centrifuga-
tion (10 min, 537 × g), and 5 ml of the supernatant were
filtered through a 0.2 µm syringe filter. Extracts were
blown to dryness under nitrogen, and then redissolved
in 250 µl of 90% acetone.

Quantitative analysis of all pigments was conducted
with a Waters HPLC equipped with an online photo-
diode array (Waters 996 PDA) and a fluorescence de-
tector (Waters 616) with excitation set at 440 nm
and emission at 660 nm. We injected 200 µl of each
sample through a guard column to a reverse phase All-
tech Absorbsphere C18 column (5 µm particle size;
250 mm × 4.6 mm internal diameter). The 3-step gradi-
ent program was modified after Wright et al. (1991)

as described by Chen et al. (2001) for enhancing the
separation of phaeopigments.

Identification of pigments was performed by compar-
ing retention time and PDA spectra to standards (DHI
Water and Environment). Carotenoids were quantified
at 438 nm on the PDA detector, while chlorophylls and
phaeopigments were quantified on the fluorometer.
The response factor (RF) was determined for each pig-
ment by a single run of each pigment standard. In the
POM, the pigments identified for determining the
phytoplankton composition through CHEMTAX were
chl a, peridinin, 19’but-fucoxanthin, fucoxanthin, pra-
sinoxanthin, 19’hex-fucoxanthin, alloxanthin, zeaxan-
thin, chl b, dinoxanthin, and chl c2. In the sediment,
chl a, some phaeopigments, and some accessory pig-
ments were identified. Many degradation products of
chl a and b can be found in the sediment, but only
phaeophorbide a and b and phaeophytin a and b were
identified in this study. The accessory pigments identi-
fied were fucoxanthin as a marker of diatoms and some
haptophytes, 19’but-fucoxanthin and 19’hex-fucoxan-
thin as markers of haptophytes, alloxanthin as a marker
of cryptophytes, prasinoxanthin and chl b as markers of
green algae (prasinophytes + chlorophytes), peridinin
as a marker of dinoflagellates, and zeaxanthin as a
marker of cyanobacteria.

Carbon and nitrogen stable isotope analysis. Stable
isotope analysis of POM filters was performed after
acidification by the National Hydrology Research Insti-
tute in Saskatoon, Saskatchewan, Canada, using the
method of Hobson et al. (1995). Frozen sediment sam-
ples for stable isotope analysis were dried at 60°C
overnight. To decalcify sub-samples for carbon analy-
sis, about 2 g of dry, homogenized sediment were
placed in a crucible, to which 2 ml of 1 N HCl were
added, and then dried overnight. This operation was
repeated 3 times, or until the sediment did not show a
clear bubbling due to the conversion of carbonate to
carbon dioxide gas. The decalcified sediment was used
for δ13C determinations, and undecalcified sediment
was used for δ15N analysis. Stable isotope analysis of
sediments was performed by the Environmental Geo-
chemistry Laboratory, Department of Geology, Bates
College, Lewiston, Maine, using a ThermoFinnigan
Delta V coupled to a Costech EA Conflo III combustion
interface. All stable carbon isotope values are reported
in delta (δ) notation, in units of per mille (‰), where δ =
[(Rsample / Rstandard) – 1] × 1000. R = 13C/12C and 15N/14N,
and the standards are Vienna Peedee belemnite
(VPDB) and air for carbon and nitrogen, respectively.
The reproducibility on the bulk sediment was ±0.2‰,
as determined by the standard deviation of multiple
analyses.

CHEMTAX and statistical treatment. The contribu-
tions of the 6 major algal groups (diatoms, hapto-
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Station Latitude Longitude Water Distance  SCD  
(° N) (° W) depth to river (mmol C

(m) (km) m–2 d–1)

Fall
100 70.586 120.991 400 511 1.5
124 71.399 126.796 400 333 1.9
200 70.047 126.302 234 310
300 70.591 127.742 050 266 8..
309 71.118 125.802 420 352 2.2
315 71.484 124.538 221 409
400 70.917 128.916 036 240
415 71.901 125.866 054 390
500 72.001 127.578 395 349 2.3
709 70.951 133.752 086 133
718 70.171 133.538 045 054 3.2

Summer
109 70.654 123.366 570 425
124 70.676 123.412 440 424
200 70.047 126.302 234 310 4.9
212 70.766 123.879 440 408
215 70.974 123.416 294 430
309 71.118 125.802 420 352
315 71.484 124.538 221 409 2.1
400 70.917 128.916 036 240 5.2
406 71.314 127.713 180 300 1.8
409 71.506 127.089 380 330
415 71.901 125.866 054 390 4.9
600 71.707 130.828 330 251
609 70.937 130.481 044 195 5.2
650 71.319 131.583 244 200 1.3
709 70.935 133.797 082 131 20.
718 70.170 133.535 042 054 4.8
803 70.645 135.891 241 112 3.2
809 70.092 135.342 043 051
850 70.567 137.592 11220 150
906 70.047 138.585 271 163 3.9
912 69.488 137.940 055 141 4.3

Table 1. Station position, water depth, distance to Mackenzie
River, and sediment carbon demand (SCD) for stations sam-
pled in this study. SCD of the whole core was determined by 

Renaud et al. (2007c)
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phytes, cryptophytes, green algae, dinoflagellates, and
cyanobacteria) were estimated from the pigment ratios
determined by HPLC at the water chlorophyll maxi-
mum depth, using the CHEMTAX program and initial
ratios of Mackey et al. (1996). The use of CHEMTAX as
an estimation of the algal groups from pigments is con-
troversial, as it is often difficult to establish accurate
pigment ratios, and these may vary depending upon
environmental conditions; however, the results ob-
tained with CHEMTAX followed the tendency ob-
served in the raw pigments ratios, i.e. high percentage
of dinoflagellates when abundant peridinin was found
(see above for the main pigment markers of taxonomic
groups). Moreover, the relevance of CHEMTAX for
estimating major algal group contributions in the
present study was confirmed by comparison to micro-
scopic algal counts (S. Brugel pers. obs.).

Seasonal differences between summer and fall and
spatial differences between the gulf and the Macken-
zie shelf were analyzed by a t-test when the data were
normal and variances were equal, and by a Mann-
Whitney Rank Sum test (MW test) when the data failed
normality and equal-variance tests. It is important to
note that the stations studied in summer and in fall
were not always the same, but are still assigned to
either shelf or gulf areas. This could introduce a con-
fusing bias while trying to make seasonal comparisons
(see ‘Discussion’). Linear relationships between envi-
ronmental factors (depth, distance to river, Tchl a), sed-
iment oxygen demand (data from Renaud et al. 2007c),
and biomarkers were analyzed by Pearson’s product-
moment correlation. Correlation analyses, MW tests,
and t-tests were performed using SigmaStat 3.5 (2006
Systat Software).

RESULTS

Phytoplankton species and water column isotopes

Chl a integrated over the entire water column
(Tchl a) is presented in Fig. 2c,d. Values were higher in
the summer than during the fall (MW test, p < 0.05).
Tchl a values were higher closer to the coast, particu-
larly near the Mackenzie River delta, and may reflect
an increase in primary productivity associated with
increased nutrient delivery to the nearshore zone.
Analysis of pigment distributions using CHEMTAX
indicated seasonal and spatial differences in phyto-
plankton distributions (Fig. 2e,f). In the summer, dia-
toms dominate on the shelf region (mean 70 ± 11%),
whereas smaller cells, such as haptophytes and green
algae, are more abundant in the gulf (total 83 ± 15%).
In the fall, diatoms decreased significantly (mean for
all areas 15 ± 10%, t-test, p < 0.05); haptophytes and

green algae dominated (both combined represent
mean 80 ± 17%).

The C:N ratio in POM in the fall was higher than in
the summer (t-test, p < 0.05). In the fall, C:N values
ranged between 9.3 at Stn 718 and 17.1 at Stn 309, and
were higher in the gulf than on the shelf, while most of
summer C:N data were between 6.7 and 9.5. δ13C val-
ues in POM were significantly lower in the fall than in
the summer (t-test, p < 0.05). δ13C varied from –26.6‰
(Stn 410) to –28.5‰ (Stn 718) in the fall, and from
–21.0‰ (Stn 912) to –26.8 (Stn 200) in the summer.
δ15N values of POM varied from 0‰ (Stn 100) to 4‰
(Stn 709) in the gulf and were more variable and more
enriched (higher δ15N value) along the shelf, particu-
larly in the summer (Fig. 3 and see Fig. 6a).

Sedimentary pigments and isotopes

Sedimentary chl a values as determined by fluorom-
etry and by HPLC were significantly correlated (r = 0.8,
p < 0.05). Sedimentary chl a determined by HPLC
ranged from <0.01 in the Amundsen Gulf to a maxi-
mum of 3 µg g–1 dry weight on the shelf. Sedimentary
chl a determined by fluorometry ranged from 0.16 to
19.52 mg m–2 (Fig. 4c,d). Highest sedimentary chl a
values were found close to the Mackenzie River delta
and in shallow areas. For both shelf and gulf areas, sig-
nificant differences were not found between the fall
and the summer. However, the difference between the
gulf and the shelf was significant in the summer (MW
test, p < 0.05) and showed a similar tendency in the fall
(MW test, p = 0.05). The chl a:phaeo ratio (Fig. 4a,b), an
indicator of the freshness of the organic matter reach-
ing the benthos, showed similar results for the summer,
with higher ratios (fresher material) on the shelf (MW
test, p < 0.05). Sedimentary accessory pigments varied
spatially and seasonally (Fig. 4e,f). In the summer, sed-
imentary fucoxanthin and chl b were the most abun-
dant accessory pigments on the continental shelf and
in the gulf, respectively, while in the fall, the pigment
composition was more heterogeneous and indicated a
substantial contribution from other taxonomic groups
on the sediment surface, including dinoflagellates and
small cells (haptophytes and green algae).

No significant seasonal differences were observed
(all p > 0.05) between fall and summer for sedimentary
isotopes (Figs. 5 & 6b); however, significant spatial dif-
ferences in both δ15N and δ13C values were observed
between the Amundsen Gulf and the shelf area (MW
tests, p < 0.05). Both δ15N and δ13C were highest in the
gulf area. In the fall, the highest values were observed
at Stn 100 (δ15N 6.8‰; δ13C –22.8 ‰), and in the sum-
mer, at Stn 212 (δ15N 6.7‰; δ13C –21.1‰). On the shelf,
the values were lower. In the fall, the lowest was
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observed at Stn 300 (δ15N 2.1‰; δ13C
–26.2‰), and in the summer at Stn 809
(δ15N 1.9‰; δ13C –25.8‰). The C:N
ratio did not show clear seasonal or spa-
tial variation. The minimum (8.5) was
observed at Stn 124 in the summer and
the maximum (15) at Stn 300 in the fall.

Environmental factors and biomarker
correlations

The percentage of nitrogen in POM
samples showed a significant inverse cor-
relation with the distance to the river
mouth during the fall (r = –0.93, p < 0.05),
but no other significant relationship was
found between the depth and distance to
river and either POM, isotopes, or Tchl a.
In the fall, the percentage of haptophytes
was significantly correlated with the dis-
tance to the river (r = 0.86, p < 0.05), and
the percentage of green algae was signif-
icantly inversely correlated (r = –0.78, p <
0.05) with the distance to the river. The
δ15N and δ13C and C:N values of POM
varied seasonally (Fig. 6a). Fall stations
had a more terrestrial (i.e. depleted) sig-
nature, while summer stations had a
more marine (i.e. enriched) and mixed
signature.

Although environmental factors did
not seem to influence summer POM con-
stituents, correlations between depth,
distance to the river mouth, and total wa-
ter column chl a with sedimentary bio-
markers (Table 2) showed the impor-
tance of these factors for sediment
isotopes and pigments for both seasons.
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Fig. 6. Stable isotope composition (‰) in (a) the particulate organic matter at
the depth of chlorophyll max and (b) the sediment. Dashed lines represent
Parsons’ delimiting lines (Parsons et al. 1989) for separating terrestrial (T)
from marine (M) origin. TM represents an area of mixing between terrestrial

and marine origin

δ15N δ13C Chl a:Phaeo Chl a Phaeophorbide a Phaeophytin a Chl b degraded

Depth Fall 0.95 0.94 –0.77 –0.82 00.56 –0.20 –0.82
Summer 0.02 0.05 –0.50 –0.52 –0.43 00.38 –0.01

Distance to river Fall 0.69 0.93 –0.68 –0.60 00.08 –0.56 –0.92
Summer 0.79 0.78 –0.34 –0.29 –0.17 000 00.07

Tchl a Fall 0.79 0.98 –0.63 –0.79 0.2 –0.03 –0.32
Summer 0.03 –0.060 0.36 00.63 00.42 –0.23 00.01

SCD Fall –0.890 –0.890 0.52 00.78 –0.68 –0.19 00.23
Summer –0.230 0.09 0.70 00.73 –0.17 00.29 00.24

Table 2. Correlation between environmental factors (water depth, distance to river, water column total integrated chl a [Tchl a],
and sediment carbon demand, SCD) and sedimentary biomarkers during fall 2003 and summer 2004. Significant correlations 

(p < 0.05) are indicated in bold. SCD data from Renaud et al. (2007c)
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The amount of sedimentary chl a and the chl a:phaeo ra-
tio were always significantly inversely correlated with
depth (Table 2). In the fall, depth was significantly pos-
itively correlated with the sedimentary carbon and nitro-
gen isotopes; however, there was no correlation in the
summer. In the fall, degraded chl b (phaeophytin and
phaeophorbide b) was inversely correlated with depth
and distance to the river. During the summer, total
phaeopigments correlated significantly with phaeo-
phorbide a (r = 0.64, p < 0.05), while in the gulf area, to-
tal phaeopigments correlated with phaeophytin a (r =
0.61, p < 0.05).

In the summer, sedimentary δ13C and δ15N values
were significantly correlated with the distance to the
river mouth, while the correlation was only significant
for δ13C values in the fall. Geographical differences in
sediment isotopes were also found when plotting δ13C
with δ15N values (Fig. 6b).

DISCUSSION

The use of multiple biomarkers for both water col-
umn and sediment analysis in the southeast Beaufort
Sea allowed delineation of sources of carbon and con-
firmed the strength of pelagic–benthic coupling. The
approach also allowed an understanding of the relative
importance of time and space for both the sources of
organic matter and its fate. Local water-column inputs
to the benthos were also identified as well as the geo-
graphical differences based on the Mackenzie River
influence, and how changes in organic matter inputs to
the sea floor can impact the benthos.

Importance of local water-column inputs

The significant positive correlation between Tchl a
and sedimentary chl a in the summer (r = 0.6, p < 0.05)
suggests that local primary production contributes sig-
nificantly to the inputs of fresh organic matter to the
benthos in all areas. The negative correlation in the
fall, which was also found by Bessière et al. (2007), is
harder to explain, and might be the result of the very
small range of data observed for both Tchl a and sedi-
mentary chl a. Further investigation into this correla-
tion would be needed in the case of low values such as
those observed in the fall. The southeast Beaufort Sea
is thought to be oligotrophic (Carmack et al. 2004,
Walsh et al. 2005), and the inputs of fresh organic mat-
ter to the benthos are minimal. On the shelf area, our
sedimentary chl a averaged 1.7 ± 1 µg g–1 and was sim-
ilar to values found in the Bering Sea (Pirtle-Levy et al.
in press). In the gulf area, the average (0.05 ± 0.07 µg
g–1) showed similar values to the Northeast Water and

North Water polynyas (Ambrose & Renaud 1997, Grant
et al. 2002, respectively). These values are higher than
in the deep central Arctic Ocean (Clough et al. 1997,
Soltwedel & Schewe 1997), but lower than in more pro-
ductive systems such as in the Bering and the Barents
Seas for similar depths (Cooper et al. 2005, Morata &
Renaud 2008, respectively) and emphasize the impor-
tance of water column productivity for sedimentary
chl a in Arctic ecosystems.

Not only has the total chl a in the water column been
shown to determine the sedimentary chl a, but the
composition of phytoplankton was also reflected in the
sedimentary pigment composition in other Arctic eco-
systems (Morata & Renaud 2008, Pirtle-Levy et al. in
press). In our study, the importance of diatoms in the
summer was reflected in the sediment by the impor-
tance of fucoxanthin, while in the fall, pigments of
smaller cells (haptophytes, prasinophytes) were found
in the sediment. Phytoplankton observations in sedi-
ment traps in Franklin Bay also showed a dominance of
small cells (coccolithophores and flagellates) in the fall
and a higher abundance of diatoms in the summer
(Forest et al. 2008). It is commonly thought that pico-
plankton is recycled within the food web and only
larger phytoplankton is exported. Recently, Richard-
son & Jackson (2007) suggested that picoplankton,
despite their small size, can play an important role in
inputs of organic matter to the equatorial Pacific ben-
thos. Traditionally, the Arctic marine production has
been thought to be dominated by large phytoplankton
(von Quillfeldt 1997); however, recent studies have
shown that picophytoplankton can play an important
role in late summer (Not et al. 2005, Lovejoy et al.
2006), including in the Beaufort Sea (Lovejoy et al.
2007). These small cells seem to sink relatively fast,
probably while aggregated or associated with larger
cells, as suggested by Richardson & Jackson (2007),
and represent a source of inputs of organic matter to
the benthos in the fall.

In the Amundsen Gulf area, the importance of green
algae in the water column is reflected in the sediment
by the presence of chl b. Arctic waters tend to have
high amounts of green algae (Suzuki et al. 2002, Not et
al. 2005, Morata et al. 2008), but green algae are also
found in freshwaters (see discussion about river inputs
below). The absence of chl b between the Mackenzie
River and the gulf area (mainly fucoxanthin is found as
an accessory pigment on the shelf), and the strong
signal of chl b in the gulf is most likely to indicate
greater importance of Arctic water in this region than
on the shelf.

Sedimentary fucoxanthin was found broadly in the
shelf area in the summer. Diatoms are important pri-
mary producers in the Arctic for both phytoplankton
and ice algae (von Quillfeldt 2000 and references
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therein). Ice algal diatoms have been previously found
in Arctic sediment (Sancetta 1981, Cremer 1999,
Polyakova 2003, Ambrose et al. 2005) and were also
found at Stn 200, studied over the winter/spring (N.
Morata pers. obs.). While chlorophylls are in general
more labile and have shorter half lives (few weeks in
the Arctic; Graf et al. 1995), carotenoids, such as fuco-
xanthin, can be very persistent in the sediment (Buch-
aca & Catalan 2007). Sedimentary fucoxanthin found
in the summer could reflect remaining inputs from the
spring ice-associated algae. Ice algae are quickly pro-
cessed by benthic fauna (McMahon et al. 2006,
Renaud et al. 2007a). However, resting cells of diatoms
can remain in the sediment from months to years
(McQuoid et al. 2002), and Smith et al. (2006) sug-
gested the idea of a ‘foodbank’ in Antarctica, where
phytopigments can be stored and remain available
through the year. The high amounts of sedimentary
fucoxanthin in the summer may indicate that, while
benthic communities quickly utilize newly deposited
ice algae, some phytopigments remain for a longer
period. These values of high amounts of sedimentary
fucoxanthin raise questions similar to those of Pirtle-
Levy et al. (in press), who also found significant con-
centrations of fucoxanthin in the sediment of the
Bering Sea. Alternatively, the POM data (Tchl a, δ13C,
C:N) imply rapid rates of primary production in the
summer months on the shelf, which might increase the
flux of fucoxanthin into the sediment record. Although
it is impossible to differentiate ice algae diatoms from
phytoplankton diatoms using pigment analysis, it
would be interesting in the future to assess the im-
portance of inputs from ice algae in the sediment by
other techniques such as direct cell identification and
counting or lipid biomarker analysis (McMahon et al.
2006).

While both sedimentary chl a and phaeopigments
reflect inputs of fresh organic matter, the presence of
phaeopigments also indicates degradation processes
(Mantoura & Llewellyn 1983, Villanueva & Hastings
2000) since phaeophorbide a is a marker for herbivore
digestion (Bianchi et al. 1988), and phaeophytin a can
result from microzooplankton or microbenthos grazing
(Bianchi et al. 1988, Verity & Vernet 1992), bacterial
degradation (Leavitt & Carpenter 1990), or cell senes-
cence (Louda et al. 1998). During the summer, intact
fecal pellets of large herbivorous copepods and appen-
dicularians were found in sediment traps, while in the
fall, pellets were more degraded (Forest et al. 2007).
The correlation of total sedimentary phaeopigments
with sedimentary phaeophorbide a in the summer
(Table 2) underlines the importance of macro- and
mesozooplankton grazing as a main degradation factor
of material reaching the benthos; however, in the fall,
the very low chl a:phaeo ratios suggested that the

material reaching the benthos was highly processed,
and it is difficult to relate chl a degradation products to
their sources. Spatially, for both seasons, the total
phaeopigments in the gulf area were correlated with
phaeophytin a (Table 2), highlighting complex degra-
dation processes, since phaeophytin a can be created
by microbial degradation, grazing, and cell senes-
cence. On the shelf area, no clear correlation was
found.

The significant correlation between phaeopigments
and phaeophytin a, the lowest chl a:phaeo ratios, and
the enriched δ15N and δ13C values suggest that in the
gulf area, material reaching the sediment has been
heavily degraded, especially by microbial degrada-
tion. Products from microbial activity are an important
source of organic matter to the benthos 4 to 11 mo after
the phytoplankton bloom in the Bering Sea (Lovvorn et
al. 2005), and enhanced microbial degradation has
been observed in the polynya (Lovejoy et al. 2002,
Sherr et al. 2003, Wassmann et al. 2006). The presence
of a polynya, where phytoplankton blooms usually oc-
cur earlier than in the rest of the system, could explain
an enhanced bacterial degradation in this area, but the
greater water depth could also be a factor, as observed
by Grebmeier & Barry (1991). Sedimentary chl a is
inversely correlated with depth (Table 2, Ambrose &
Renaud 1995), suggesting that over a deeper water col-
umn, material has more time to be degraded and re-
cycled by bacteria, and thus a smaller, and more de-
graded, fraction of the overlying production reaches
the seafloor. However, it remains impossible to deter-
mine the relative importance of these 2 mechanisms.

River influence

To determine the origin of materials in the sediment
of the Beaufort Sea, Parsons et al. (1989) determined
the stable isotope composition (δ15N and δ13C) and
delimited approximate maximum values for marine
and terrestrial sources of organic material. These
amounts are represented in Fig. 6. For the POM, the
origin differed between seasons (fall was more terres-
trial, summer was more marine), while in the sediment,
the spatial position seemed to be a more important fac-
tor in determining the matter origin, since the gulf area
had a more marine signature and the shelf area had a
more terrestrial signature. Certainly, the entire study
region can receive both terrestrial and marine carbon,
and preferential degradation of the more labile marine
source may be partly responsible for the reduced
marine signature in gulf and summer samples. How-
ever, the general patterns reflect well the seasonal and
spatial patterns in extent of the Mackenzie plume, and
supporting data are discussed below.
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The autochthonous marine signature of the POM in
the summer was also confirmed by C:N ratios of 6 to 7
(Fig. 3a), which are typical of marine phytoplankton
(Redfield et al. 1963, Daly et al. 1999). It is important to
note that the POM samples were sampled at the chl a
max determined by the CTD, between 10 and 50 m;
however, at some stations, elevated levels of chl a were
also observed in the surface waters (S. Brugel pers.
obs.), where the water properties over the first 5 m
showed a lower salinity typical of the Mackenzie River.
Previous studies have reported the spread of the
Mackenzie plume across the shelf region as a shallow
lens, especially later in the summer and fall (Carmack
& Macdonald 2002, Carmack et al. 2004), but this
seemed to have a low direct influence on the composi-
tion of deeper POM (Fig. 3); however, nutrients deliv-
ered by the Mackenzie River might be stimulating pri-
mary productivity in the nearshore zone. Previous
studies have suggested that although a heterotrophic
food web based on riverine organic carbon exists near
the Mackenzie River mouth, the offshore community is
more marine/oceanic (Parsons et al. 1988, O’Brien et
al. 2006). Although the stations studied in summer and
fall were different, which, as mentioned previously,
might lead to a bias during comparison, POM had a
more terrigenous signature in the fall, as also sug-
gested by other POM biomarker studies (Yunker et al.
1995) and sediment trap studies (O’Brien et al. 2006,
Forest et al. 2007) and the presence of allochthonous
bacteria on the shelf (Wells et al. 2006).

While the river influence on the POM was seasonal,
with maximal direct influence in the fall, sedimentary
isotope values showed more of a spatial difference
between the gulf and the shelf (Fig. 6b). The higher
δ15N and δ13C values suggested that during the sum-
mer, in the gulf area (farthest from the river), material
reaching the benthos is more marine and/or degraded.
Conversely, the shelf had a more terrestrial signature
(terrestrial δ13C values of –26.5 to –27‰ for the Beau-
fort area; Naidu et al. 1993, Goñi et al. 2000). The dif-
ference in isotopic signature between the Mackenzie
shelf and the Amundsen Gulf was confirmed when
plotting δ13C and δ15N values for sediments (Fig. 6b),
highlighting the geographic position as the main factor
influencing sedimentary stable isotope values.

Although stable isotope measurements did not show
seasonal variations, chl b degradation products (phaeo-
phytin b and phaeophorbide b) were more abundant in
the fall. Chl b occurs mainly in green algae and terres-
trial plants (Kowalewska 2005) and is less stable than
chl a (Kowalewska & Szymczak-Zyla 2001); however,
degradation products of chlorophylls are usually very
persistent in sediment records (Scheer 1991). Freshwa-
ter green algae have been used as a marker of river
runoff in the Beaufort, Laptev, and Kara Seas (Mat-

thiessen et al. 2000), and high sedimentary chl b con-
tents have been attributed to the intensive influence
of riverine fresh water (Kowalewska et al. 1996, Mat-
thiessen et al. 2000). In the fall, the high levels of chl b
degradation products and the strong negative correla-
tion of chl b degradation products with distance from
the river suggest that, as for the POM, the influence of
degraded material from the Mackenzie River is high,
especially on the shelf; however, this material probably
represents a small portion of the total organic matter
present in the sediment, and this signal is lost when
studying stable isotopes in the bulk sediment. Sedi-
mentary stable isotopes values integrate signals at a
longer time scale and showed clear spatial variations,
but no seasonal variations.

To date, our knowledge of the influence of Arctic
rivers on POM and sedimentary stable isotope compo-
sition has been based on rivers such as the Lena River
influencing the Laptev Sea (Rachol & Hubberten
1999), and the Ob and Yenisei Rivers influencing the
Kara Sea (Fahl et al. 2003). These studies in the Arctic,
as in temperate estuaries (McCallister et al. 2004, Hoff-
man & Bronk 2006), found depletion in 13C next to the
river mouth, implying high amounts of terrigenous
detrital input, while enriched 13C values were found in
regions less influenced by rivers such as the Chukchi,
Bering, and Barents Seas (Naidu et al. 1993, Dunton et
al. 2006, Tamelander et al. 2006). Although sedimen-
tary isotopes might not by themselves reflect changes
in organic matter origin on a short time scale, com-
bined with sedimentary pigment, they should allow
the tracking of changing influences of the Mackenzie
River on the Beaufort Sea.

Seasonal and spatial variations in the inputs of
organic matter to the benthos

Benthic community response to inputs of fresh
phytodetritus is rapid (Renaud et al. 2007a), and sedi-
ment carbon demand (SCD) is correlated with sedi-
mentary chl a (Clough et al. 2005, Renaud et al. 2007c,
2008). Our study shows that not only the sedimentary
chl a correlates with SCD, but also the chl a:phaeo
ratio, an indicator of the ‘freshness’ of the organic mat-
ter (Table 2). Moreover, the percentage of organic car-
bon in the sediment (%C; N. Morata unpubl. data) is
significantly correlated with SCD in the summer, while
stable isotope measurements correlate with SCD in the
fall. Stable isotope measurements of the bulk sediment
relate the total contents of organic matter in sediment,
not only the fresh inputs as pigments. This suggests
that in the summer, benthic activities depend on the
arrival of fresh organic matter, characterized by a high
amount of chl a, high chl a:phaeo ratio, and high %C,
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while in the fall, since material reaching the sediment
is more degraded and less important, benthic activities
depend more on the bulk of organic matter. Inputs of
phytodetritus also have an impact on the meiofauna in
the southeast Beaufort Sea (Bessière et al. 2007),
where highest meiofauna densities in the summer on
the Mackenzie shelf and Franklin Bay are attributed to
high inputs of fresh organic matter. Meiofaunal com-
position changed in relation to their affinity to phy-
todetritus: nematodes seemed to be more adapted to
degraded phytodetritus, while turbellarians and kinor-
hynchs were correlated with fresh phytodetritus in the
summer (Bessière et al. 2007).

Although the meiofaunal composition seemed to be
influenced by seasonal variations of organic matter in-
puts to the benthos, the southeast Beaufort Sea macro-
faunal community composition showed spatial varia-
tions (Conlan et al. 2008) between the Mackenzie shelf
and the gulf area, even though the difference was not
explained by the presence of the polynya. Benthic
macro- and megafauna respond more to environmen-
tal forcing than micro- and meiofauna (Gage & Tyler
1991), so their distribution and structure are expected
to integrate variations at longer time scales (Piepen-
burg 2005). Interestingly, SCD also showed spatial
variations and was lower in the gulf than on the shelf
(t-test, p < 0.05). As seen previously, the gulf area
shows more degraded pigments and a stable isotopic
composition typical of marine origin. Benthic activities
(SCD) and community compositions might reflect these
differences in organic matter inputs.

CONCLUSIONS

The combination of sedimentary pigments and sta-
ble isotope measurements allowed us to identify spa-
tial and seasonal variations of organic matter inputs to
the benthos of the eastern Beaufort Sea. Sedimentary
pigments reflected seasonal variations in the pelagic–
benthic coupling. In the summer, inputs of ‘fresh’ or-
ganic matter to the benthos were related to the over-
lying production. The main degradation process is
through zooplankton grazing. In the fall, there is evi-
dence of rapid deposition of small algal cells to the sea
floor, with material also being generally more de-
graded. Inputs from the river were also an important
source of arriving material in the fall. Sedimentary pig-
ments also suggested that in the gulf area, most mate-
rial reaching the sea floor was heavily degraded, prob-
ably due to microbial degradation. Stable isotopes
highlighted spatial differences between the shelf and
the gulf area. The shelf area is under the influence of
terrestrial inputs, while in the gulf, material reaching
the sea floor is from a more marine origin.
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